Информатика -продвинутый курс



         

ТЕХНИКА СТОХАСТИЧЕСКОГО МОДЕЛИРОВАНИЯ - часть 3


Понятно, что при большом числе испытаний высоты столбиков должны быть почти одинаковыми. Однако, этот критерий является необходимым, но не достаточным; например, он «не замечает» даже очень короткой периодичности Для не слишком требовательного пользователя обычно достаточны возможности датчика (генератора) случайных чисел, встроенного в большинство языков программирования. Так, в PASCAL есть функция random, значения которой - случайные числа из диапазона [0, 1). Ее использованию обычно предшествует использование процедуры randomize, служащей для начальной «настройки» датчика, т.е. получения при каждом из обращений к датчику разных последовательностей случайных чисел. Для задач, решение которых требует очень длинных некоррелированных последовательностей, вопрос осложняется и требует нестандартных решений Равномерно распределенные случайные числа - простейший случай Располагая датчиком случайных

чисел, генерирующим числа r Î [0, 1], легко получить числа из произвольного интервала [а, b].

X = a + (b - a)•r.

Более сложные распределения часто строятся с помощью распределения равномерного. Упомянем здесь лишь один достаточно универсальный метод Неймана (часто называемый также методом отбора-отказа), в основе которого лежит простое геометрическое соображение. Допустим, что необходимо генерировать случайные числа с некоторой нормированной функцией распределения f(x) на интервале [а, b].

Введем положительно определенную функцию сравнения w(x) такую, что w(x) = const и w(x) > f(x) на [а, b] (обычно w(x) равно максимальному значению f(x) на [а, b]). Поскольку площадь под кривой f(x) равна для интервала [х, х + dx] вероятности попадания х

в этот интервал, можно следовать процедуре проб и ошибок. Генерируем два случайных числа, определяющих равновероятные координаты в прямоугольнике A BCD с помощью датчика равномерно распределенных случайных чисел:

 x = a + (b - a)•r,  y = w•r

и если точка М(х, у) не попадает под кривую f(x), мы ее отбрасываем, а если попадает - оставляем (рис. 7.55).При этом множество координат х оставленных точек оказывается распределенным в соответствии с плотностью вероятности

f(x).

Рис. 7.55. Метод отбора-отказа. Функция w(x) = fmax

Этот метод для ряда распределений не самый эффективный, но он универсален, прост и понятен. Эффективен он тогда, когда функция сравнения w(x) близка к f(х). Заметим, что никто не заставляет нас брать w(x)= const на всем промежутке [а, b]. Если f(x) имеет быстро спадающие «крылья», то разумнее взять w(x) в виде ступенчатой

функции.




Содержание  Назад  Вперед